1301.6660 (Jake P. Solomon)
Jake P. Solomon
A Lagrangian submanifold in an almost Calabi-Yau manifold is called positive if the real part of the holomorphic volume form restricted to it is positive. An exact isotopy class of positive Lagrangian submanifolds admits a natural Riemannian metric. We compute the Riemann curvature of this metric and show all sectional curvatures are non-positive. The motivation for our calculation comes from mirror symmetry. Roughly speaking, an exact isotopy class of positive Lagrangians corresponds under mirror symmetry to the space of Hermitian metrics on a holomorphic vector bundle. The latter space is an infinite-dimensional analog of the non-compact symmetric space dual to the unitary group, and thus has non-positive curvature.
View original:
http://arxiv.org/abs/1301.6660
No comments:
Post a Comment