Sunday, November 4, 2012

1211.0161 (Andrea Dapor et al.)

Emergent Isotropy-Breaking in Quantum Cosmology    [PDF]

Andrea Dapor, Jerzy Lewandowski
We consider a massive quantum test Klein-Gordon field probing an isotropic quantum cosmological space-time in the background. The result obtained is surprising. It turns out, that despite the isotropy of the quantum gravitational field, the semi-classical metric experienced by a mode of the K-G field is non-isotropic. The anisotropy depends on the direction of the momentum of the mode. Specifically, what we do is to derive a semi-classical space-time which emerges to a mode of the field. The method amounts to a comparison between QFT on a quantum background and QFT on a classical curved space-time, giving rise to an emergent metric tensor. The components of the semi-classical metric tensor are calculated from the equation of propagation of the quantum K-G field in the test field approximation. The anisotropies are of a quantum nature: they are proportional to Planck constant and "dress" the isotropic classical space-time obtained in the classical limit.
View original: http://arxiv.org/abs/1211.0161

No comments:

Post a Comment