1301.3359 (Julien Serreau)
Julien Serreau
We report on the work presented in Phys. Lett. B712 (2012) 97, where a new one-parameter family of Landau gauges has been proposed for Yang-Mills theories, inspired by an analogy with disordered systems in condensed matter physics. This is based on a particular average over Gribov copies which avoids the Neuberger zero problem of the standard Fadeev-Popov construction. The proposed gauge fixing can be formulated as a local renormalizable field theory in four dimensions and is well-suited for analytical calculations. A remarkable feature is that, for what concerns the calculation of ghost and gauge field correlators, the gauged-fixed action is perturbatively equivalent to a simple massive extension of the Faddeev-Popov action. The renormalization group flow of the theory admits infrared safe trajectories, with no Landau pole. The one-loop calculations of Yang-Mills two-point correlators show remarkable agreement with lattice simulations all the way to the deep infrared.
View original:
http://arxiv.org/abs/1301.3359
No comments:
Post a Comment