Rodrigo Delgadillo-Blando, Denjoe O'Connor
We study a two parameter single trace 3-matrix model with SO(3) global symmetry. The model has two phases, a fuzzy sphere phase and a matrix phase. Configurations in the matrix phase are consistent with fluctuations around a background of commuting matrices whose eigenvalues are confined to the interior of a ball of radius R=2.0. We study the co-existence curve of the model and find evidence that it has two distinct portions one with a discontinuous internal energy yet critical fluctuations of the specific heat but only on the low temperature side of the transition and the other portion has a continuous internal energy with a discontinuous specific heat of finite jump. We study in detail the eigenvalue distributions of different observables.
View original:
http://arxiv.org/abs/1203.6901
No comments:
Post a Comment