Ling Bao, Elli Pomoni, Masato Taki, Futoshi Yagi
In this article we explore the duality between the low energy effective
theory of five-dimensional N=1 SU(N)^{M-1} and SU(M)^{N-1} linear quiver gauge
theories compactified on S^1. The theories we study are the five-dimensional
uplifts of four-dimensional superconformal linear quivers. We study this
duality by comparing the Seiberg-Witten curves and the Nekrasov partition
functions of the two dual theories. The Seiberg-Witten curves are obtained by
minimizing the worldvolume of an M5-brane with nontrivial geometry. Nekrasov
partition functions are computed using topological string theory. The result of
our study is a map between the gauge theory parameters, i.e., Coulomb moduli,
masses and UV coupling constants, of the two dual theories. Apart from the
obvious physical interest, this duality also leads to compelling mathematical
identities. Through the AGTW conjecture these five-dimentional gauge theories
are related to q-deformed Liouville and Toda SCFTs in two-dimensions. The
duality we study implies the relations between Liouville and Toda correlation
functions through the map we derive.
View original:
http://arxiv.org/abs/1112.5228
No comments:
Post a Comment