Wednesday, May 22, 2013

1103.2430 (Heng Guo et al.)

Localization of bulk matter fields, the hierarchy problem and
corrections to Coulomb's law on a pure de Sitter thick braneworld
   [PDF]

Heng Guo, Alfredo Herrera-Aguilar, Yu-Xiao Liu, Dagoberto Malagon-Morejon, Refugio Rigel Mora-Luna
In this paper we investigate the localization and mass spectra of matter fields with spin 0, 1 and 1/2 on a geometric thick brane generated by pure 4D and 5D positive cosmological constants without bulk scalar fields. This model possesses a 4D cosmological constant that can be made as small as one desires without fine-tuning it with the bulk cosmological constant. The RS model is obtained as an analytic continuation of the flat brane limit of this braneworld configuration when the Hubble parameter disappears. Within this inflating braneworld model it is possible to formulate a mechanism for obtaining TeV mass scales from Planck ones by adding a positive thin brane, where the Standard Model fields are trapped, at a distance y_2 from the origin, where the Planck thick brane resides. The brane separation must be of the same order than the inverse thickness parameter of the model in order for the mechanism to generate the desired hierarchy. This result is obtained by imposing the recovery of both the correct 4D gravitational couplings and the actually observed accelerated expansion of the universe in our de Sitter braneworld. Regarding the localization of matter in the purely geometric thick braneworld, for spin 0 massless and massive scalar fields as well as for spin 1 vector fields, the potentials of the Kaluza--Klein (KK) modes in thecorresponding Schroedinger equations are modified Poeschl-Teller potentials, which lead to the localization of the scalar and vector zero modes on the brane as well as to mass gaps in the mass spectra. We also compute the corrections to Coulomb's law coming from massive KK vector modes. For spin 1/2 fermions, we introduce the bulk mass term MF(z)\bar{\Psi}\Psi in the action and show that localization of the massless left-chiral fermion zero mode is feasible for two mass functions MF(z) with a finite/infinite number of massive KK bound states.
View original: http://arxiv.org/abs/1103.2430

No comments:

Post a Comment