Yasunori Nomura, Jaime Varela, Sean J. Weinberg
We propose an explicit framework in which low energy dynamics of quantum gravity is described preserving locality, and yet taking into account the effects that are not captured by the naive global spacetime picture, e.g. those associated with black hole complementarity. Our framework employs a "special relativistic" description of gravity; specifically, gravity is treated as a force measured by the observer tied to the coordinate system associated with a freely falling local Lorentz frame. We explicitly identify regions of spacetime in which low energy local descriptions are applicable as viewed from the freely falling frame; in particular, we identify a surface called the gravitational observer horizon on which the local proper acceleration measured in the observer's coordinates becomes the cutoff (string) scale. This allows for separating clearly between the "low-energy" local physics and "trans-Planckian" intrinsically quantum gravitational (stringy) physics, and allows for developing clear physical pictures of the origins of various effects. We construct a specific Hilbert space in which the proposed scheme is realized in a simple manner, and classify its elements according to certain horizons they possess. We also discuss implications of our framework on the firewall problem. We conjecture that the complementarity picture may persist due to properties of trans-Planckian physics.
View original:
http://arxiv.org/abs/1304.0448
No comments:
Post a Comment