Wednesday, March 6, 2013

1303.1080 (Thomas Hartman et al.)

Time Evolution of Entanglement Entropy from Black Hole Interiors    [PDF]

Thomas Hartman, Juan Maldacena
We compute the time-dependent entanglement entropy of a CFT which starts in relatively simple initial states. The initial states are the thermofield double for thermal states, dual to eternal black holes, and a particular pure state, dual to a black hole formed by gravitational collapse. The entanglement entropy grows linearly in time. This linear growth is directly related to the growth of the black hole interior measured along "nice" spatial slices. These nice slices probe the spacelike direction in the interior, at a fixed special value of the interior time. In the case of a two-dimensional CFT, we match the bulk and boundary computations of the entanglement entropy. We briefly discuss the long time behavior of various correlators, computed via classical geodesics or surfaces, and point out that their exponential decay comes about for similar reasons. We also present the time evolution of the wavefunction in the tensor network description.
View original: http://arxiv.org/abs/1303.1080

No comments:

Post a Comment