Tuesday, March 5, 2013

1303.0195 (J. Kowalski-Glikman)

Living in Curved Momentum Space    [PDF]

J. Kowalski-Glikman
In this paper we review some aspects of relativistic particles' mechanics in the case of a non-trivial geometry of momentum space. We start with showing how the curved momentum space arises in the theory of gravity in 2+1 dimensions coupled to particles, when (topological) degrees of freedom of gravity are solved for. We argue that there might exist a similar topological phase of quantum gravity in 3+1 dimensions. Then we characterize the main properties of the theory of interacting particles with curved momentum space and the symmetries of the action. We discuss the spacetime picture and the emergence of the principle of relative locality, according to which locality of events is not absolute but becomes observer dependent, in the controllable, relativistic way. We conclude with the detailed review of the most studied kappa-Poincare framework, which corresponds to the de Sitter momentum space.
View original: http://arxiv.org/abs/1303.0195

No comments:

Post a Comment