Wednesday, December 5, 2012

1212.0765 (Gia Dvali et al.)

Black Hole Macro-Quantumness    [PDF]

Gia Dvali, Cesar Gomez
It is a common wisdom that properties of macroscopic bodies are well described by (semi)classical physics. As we have suggested this wisdom is not applicable to black holes. Despite being macroscopic, black holes are quantum objects. They represent Bose-Einstein condensates of N-soft gravitons at the quantum critical point, where N Bogoliubov modes become gapless. As a result, physics governing arbitrarily-large black holes (e.g., of galactic size) is a quantum physics of the collective Bogoiliubov modes. This fact introduces a new intrinsically-quantum corrections in form of 1/N, as opposed to exp(-N). These corrections are unaccounted by the usual semiclassical expansion in h and cannot be recast in form of a quantum back-reaction to classical metric. Instead the metric itself becomes an approximate entity. These 1/N corrections abolish the presumed properties of black holes, such as non existence of hair, and are the key to nullifying the so-called information paradox.
View original: http://arxiv.org/abs/1212.0765

No comments:

Post a Comment