Tuesday, October 16, 2012

1210.3860 (C. Chicone et al.)

Linearized Gravitational Waves in Nonlocal General Relativity    [PDF]

C. Chicone, B. Mashhoon
We investigate gravitational radiation in the linear approximation within the framework of the recent nonlocal generalization of Einstein's theory of gravitation. In this theory, nonlocality can simulate dark matter; in fact, in the Newtonian regime, we recover the phenomenological Tohline-Kuhn approach to modified gravity. To account for the observational data regarding the rotation curves of spiral galaxies, nonlocality is associated with a characteristic length scale of order \lambda_0 = 10 kpc. It follows that in nonlocal gravity, the treatment of extremely low-frequency (~ 10^{-12} Hz) gravitational waves with wavelengths of order \lambda_0 would be quite different than in general relativity. However, for radiation of frequency > 10^{-8} Hz, which is the frequency range that is the focus of current observational searches, the corresponding wavelengths are very small compared to \lambda_0. We find that in this frequency regime the nonlocal deviations from general relativity essentially average out and can be safely neglected in practice.
View original: http://arxiv.org/abs/1210.3860

No comments:

Post a Comment