Thursday, September 13, 2012

1209.2496 (Jiawei Hu et al.)

Geometric phase outside a Schwarzschild black hole and the Hawking
effect
   [PDF]

Jiawei Hu, Hongwei Yu
We study the Hawking effect in terms of the geometric phase acquired by a two-level atom as a result of coupling to vacuum fluctuations outside a Schwarzschild black hole in a gedanken experiment. We treat the atom in interaction with a bath of fluctuating quantized massless scalar fields as an open quantum system, whose dynamics is governed by a master equation obtained by tracing over the field degrees of freedom. The nonunitary effects of this system are examined by analyzing the geometric phase for the Boulware, Unruh and Hartle-Hawking vacua respectively. We find, for all the three cases, that the geometric phase of the atom turns out to be affected by the space-time curvature which backscatters the vacuum field modes. In both the Unruh and Hartle-Hawking vacua, the geometric phase exhibits similar behaviors as if there were thermal radiation at the Hawking temperature from the black hole. So, a measurement of the change of the geometric phase as opposed to that in a flat space-time can in principle reveal the existence of the Hawking radiation.
View original: http://arxiv.org/abs/1209.2496

No comments:

Post a Comment