Andreas Sinner, Klaus Ziegler
We investigate the scaling properties of the recently acquired fermionic non--linear $\sigma$--model which controls gapless diffusive modes in a two--dimensional disordered system of Dirac electrons beyond charge neutrality. The transport on large scales is governed by a novel renormalizable nonlocal field theory. For zero mean random gap, it is characterized by the absence of a dynamic gap generation and a scale invariant diffusion coefficient. The $\beta$ function of the DC conductivity, computed for this model, is in perfect agreement with numerical results obtained previously.
View original:
http://arxiv.org/abs/1208.6021
No comments:
Post a Comment