Monday, August 13, 2012

1208.2168 (D. Sexty et al.)

Emergent gravity in two dimensions    [PDF]

D. Sexty, C. Wetterich
We explore models with emergent gravity and metric by means of numerical simulations. A particular type of two-dimensional non-linear sigma-model is regularized and discretized on a quadratic lattice. It is characterized by lattice diffeomorphism invariance which ensures in the continuum limit the symmetry of general coordinate transformations. We observe a collective order parameter with properties of a metric, showing Minkowski or euclidean signature. The correlation functions of the metric reveal an interesting long-distance behavior with power-like decay. This universal critical behavior occurs without tuning of parameters and thus constitutes an example of "self-tuned criticality" for this type of sigma-models. We also find a non-vanishing expectation value of a "zweibein" related to the "internal" degrees of freedom of the scalar field, again with long-range correlations. The metric is well described as a composite of the zweibein. A scalar condensate breaks euclidean rotation symmetry.
View original: http://arxiv.org/abs/1208.2168

No comments:

Post a Comment