Sunday, July 8, 2012

0712.4180 (Ben Craps et al.)

On the Quantum Resolution of Cosmological Singularities using AdS/CFT    [PDF]

Ben Craps, Thomas Hertog, Neil Turok
The AdS/CFT correspondence allows us to map a dynamical cosmology to a dual quantum field theory living on the boundary of spacetime. Specifically, we study a five-dimensional model cosmology in type IIB supergravity, where the dual theory is an unstable deformation of $\N=4$ supersymmetric SU(N) gauge theory on $\Rbar\times S^3$. A one-loop computation shows that the coupling governing the instability is asymptotically free, so quantum corrections cannot turn the potential around. The big crunch singularity in the bulk occurs when a boundary scalar field runs to infinity, in finite time. Consistent quantum evolution requires that we impose boundary conditions at infinite scalar field, i.e. a self-adjoint extension of the system. We find that quantum spreading of the homogeneous mode of the boundary scalar leads to a natural UV cutoff in particle production as the wavefunction for the homogeneous mode bounces back from infinity. However a perturbative calculation indicates that despite this, the logarithmic running of the boundary coupling governing the instability generally leads to significant particle production across the bounce. This prevents the wave packet of the homogeneous boundary scalar to return close to its initial form. Translating back to the bulk theory, we conclude that a quantum transition from a big crunch to a big bang is an improbable outcome of cosmological evolution in this class of five-dimensional models.
View original: http://arxiv.org/abs/0712.4180

No comments:

Post a Comment