Friday, April 6, 2012

1204.1181 (Harald Skarke)

How to Classify Reflexive Gorenstein Cones    [PDF]

Harald Skarke
Two of my collaborations with Max Kreuzer involved classification problems related to string vacua. In 1992 we found all 10,839 classes of polynomials that lead to Landau-Ginzburg models with c=9 (Klemm and Schimmrigk also did this); 7,555 of them are related to Calabi-Yau hypersurfaces. Later we found all 473,800,776 reflexive polytopes in four dimensions; these give rise to Calabi-Yau hypersurfaces in toric varieties. The missing piece - toric constructions that need not be hypersurfaces - are the reflexive Gorenstein cones introduced by Batyrev and Borisov. I explain what they are, how they define the data for Witten's gauged linear sigma model, and how one can modify our classification ideas to apply to them. I also present results on the first and possibly most interesting step, the classification of certain basic weights systems, and discuss limitations to a complete classification.
View original: http://arxiv.org/abs/1204.1181

No comments:

Post a Comment