Tuesday, April 3, 2012

1112.1082 (Federico Bonetti et al.)

Six-dimensional (1,0) effective action of F-theory via M-theory on
Calabi-Yau threefolds
   [PDF]

Federico Bonetti, Thomas W. Grimm
The six-dimensional effective action of F-theory compactified on a singular elliptically fibred Calabi-Yau threefold is determined by using an M-theory lift. The low-energy data are derived by comparing a circle reduction of a general six-dimensional (1,0) gauged supergravity theory with the effective action of M-theory on the resolved Calabi-Yau threefold. The derivation includes six-dimensional tensor multiplets for which the (anti-) self-duality constraints are imposed on the level of the five-dimensional action. The vector sector of the reduced theory is encoded by a non-standard potential due to the Green-Schwarz term in six dimensions. This Green-Schwarz term also contains higher curvature couplings which are considered to establish the full map between anomaly coefficients and geometry. F-/M-theory duality is exploited by moving to the five-dimensional Coulomb branch after circle reduction and integrating out massive vector multiplets and matter hypermultiplets. The associated fermions then generate additional Chern-Simons couplings at one-loop. Further couplings involving the graviphoton are induced by quantum corrections due to excited Kaluza-Klein modes. On the M-theory side integrating out massive fields corresponds to resolving the singularities of the Calabi-Yau threefold, and yields intriguing relations between six-dimensional anomalies and classical topology.
View original: http://arxiv.org/abs/1112.1082

No comments:

Post a Comment