Monday, February 27, 2012

1202.5491 (Yonatan Kahn et al.)

Locality in Theory Space    [PDF]

Yonatan Kahn, Jesse Thaler
Locality is a guiding principle for constructing realistic quantum field
theories. Compactified theories offer an interesting context in which to think
about locality, since interactions can be nonlocal in the compact directions
while still being local in the extended ones. In this paper, we study locality
in "theory space", four-dimensional Lagrangians which are dimensional
deconstructions of five-dimensional Yang-Mills. In explicit ultraviolet (UV)
completions, one can understand the origin of theory space locality by the
irrelevance of nonlocal operators. From an infrared (IR) point of view, though,
theory space locality does not appear to be a special property, since the
lowest-lying Kaluza-Klein (KK) modes are simply described by a gauged nonlinear
sigma model, and locality imposes seemingly arbitrary constraints on the KK
spectrum and interactions. We argue that these constraints are nevertheless
important from an IR perspective, since they affect the four-dimensional cutoff
of the theory where high energy scattering hits strong coupling. Intriguingly,
we find that maximizing this cutoff scale implies five-dimensional locality. In
this way, theory space locality is correlated with weak coupling in the IR,
independent of UV considerations. We briefly comment on other scenarios where
maximizing the cutoff scale yields interesting physics, including theory space
descriptions of QCD and deconstructions of anti-de Sitter space.
View original: http://arxiv.org/abs/1202.5491

No comments:

Post a Comment