Friday, February 3, 2012

1201.2200 (Benedict von Harling et al.)

Affleck-Dine dynamics and the dark sector of pangenesis    [PDF]

Benedict von Harling, Kalliopi Petraki, Raymond R. Volkas
Pangenesis is the mechanism for jointly producing the visible and dark matter
asymmetries via Affleck-Dine dynamics in a baryon-symmetric universe. The
baryon-symmetric feature means that the dark asymmetry cancels the visible
baryon asymmetry and thus enforces a tight relationship between the visible and
dark matter number densities. The purpose of this paper is to analyse the
general dynamics of this scenario in more detail and to construct specific
models. After reviewing the simple symmetry structure that underpins all
baryon-symmetric models, we turn to a detailed analysis of the required
Affleck-Dine dynamics. Both gravity-mediated and gauge-mediated supersymmetry
breaking are considered, with the messenger scale left arbitrary in the latter,
and the viable regions of parameter space are determined. In the gauge-mediated
case where gravitinos are light and stable, the regime where they constitute a
small fraction of the dark matter density is identified. We discuss the
formation of Q-balls, and delineate various regimes in the parameter space of
the Affleck-Dine potential with respect to their stability or lifetime and
their decay modes. We outline the regions in which Q-ball formation and decay
is consistent with successful pangenesis. Examples of viable dark sectors are
presented, and constraints are derived from big bang nucleosynthesis, large
scale structure formation and the Bullet cluster. Collider signatures and
implications for direct dark matter detection experiments are briefly
discussed. The following would constitute evidence for pangenesis:
supersymmetry, GeV-scale dark matter mass(es) and a Z' boson with a significant
invisible width into the dark sector.
View original: http://arxiv.org/abs/1201.2200

No comments:

Post a Comment