1205.5754 (Jürgen Struckmeier)
Jürgen Struckmeier
A consistent, local coordinate formulation of covariant Hamiltonian field theory is presented. While the covariant canonical field equations are equivalent to the Euler-Lagrange field equations, the covariant canonical transformation theory offers more general means for defining mappings that preserve the action functional - and hence the form of the field equations - than the usual Lagrangian description. Similar to the well-known canonical transformation theory of point dynamics, the canonical transformation rules for fields are derived from generating functions. As an interesting example, we work out the generating function of type F_2 of a general local U(N) gauge transformation and thus derive the most general form of a Hamiltonian density that is form-invariant under local U(N) gauge transformations.
View original:
http://arxiv.org/abs/1205.5754
No comments:
Post a Comment