Thursday, May 3, 2012

1205.0290 (Erich Poppitz et al.)

Continuity, Deconfinement, and (Super) Yang-Mills Theory    [PDF]

Erich Poppitz, Thomas Schaefer, Mithat Unsal
We study the phase diagram of SU(2) Yang-Mills theory with one adjoint Weyl fermion on R^3xS^1 as a function of the fermion mass m and the compactification scale L. This theory reduces to thermal pure gauge theory as m->infinity and to circle-compactified (non-thermal) supersymmetric gluodynamics in the limit m->0. In the m-L plane, there is a line of center symmetry changing phase transitions. In the limit m->infinity, this transition takes place at L_c=1/T_c, where T_c is the critical temperature of the deconfinement transition in pure Yang-Mills theory. We show that near m=0, the critical compactification scale L_c can be computed using semi-classical methods and that the transition is of second order. This suggests that the deconfining phase transition in pure Yang-Mills theory is continuously connected to a transition that can be studied at weak coupling. The center symmetry changing phase transition arises from the competition of perturbative contributions and monopole-instantons that destabilize the center, and topological molecules (neutral bions) that stabilize the center. The contribution of molecules can be computed using supersymmetry in the limit m=0, and via the Bogomolnyi--Zinn-Justin (BZJ) prescription in the non-supersymmetric gauge theory.
View original: http://arxiv.org/abs/1205.0290

No comments:

Post a Comment