1303.5674 (N. Callebaut et al.)
N. Callebaut, D. Dudal
During heavy ion collisions, high temperatures and strong magnetic fields are generated. We employ the gauge-gravity duality to study the N_f=2 QCD phase diagram under these extreme conditions in the quenched approximation, in particular we use the non-antipodal Sakai-Sugimoto model (SSM). We take the different coupling of up and down flavours to the magnetic field into account geometrically, resulting in a split of the chiral phase transition according to flavour. We discuss the influence of the magnetic field on the chiral temperatures -in physical GeV units- in terms of the choice of the confinement scale in the model, extending hereby our elsewhere presented discussion of fixing the non-antipodal SSM parameters to the deconfinement phase. The flavour-dependent (T,L,eB) phase diagram, with variable asymptotic brane-antibrane separation L, is also presented, as a direct generalization of the known (T,L) phase diagram of the non-antipodal SSM at zero magnetic field. In particular, for sufficiently small L we are probing a NJL-like boundary field theory in which case we do find results very reminiscent of the predictions in NJL models.
View original:
http://arxiv.org/abs/1303.5674
No comments:
Post a Comment