Wednesday, March 13, 2013

1303.2899 (Olivier Sarbach et al.)

Relativistic Kinetic Theory: An Introduction    [PDF]

Olivier Sarbach, Thomas Zannias
We present a brief introduction to the relativistic kinetic theory of gases with emphasis on the underlying geometric and Hamiltonian structure of the theory. Our formalism starts with a discussion on the tangent bundle of a Lorentzian manifold of arbitrary dimension. Next, we introduce the Poincare one-form on this bundle, from which the symplectic form and a volume form are constructed. Then, we define an appropriate Hamiltonian on the bundle which, together with the symplectic form yields the Liouville vector field. The corresponding flow, when projected onto the base manifold, generates geodesic motion. Whenever the flow is restricted to energy surfaces corresponding to a negative value of the Hamiltonian, its projection describes a family of future-directed timelike geodesics. A collisionless gas is described by a distribution function on such an energy surface, satisfying the Liouville equation. Fibre integrals of the distribution function determine the particle current density and the stress-energy tensor. We show that the stress-energy tensor satisfies the familiar energy conditions and that both the current and stress-energy tensor are divergence-free. Our discussion also includes the generalization to charged gases, a summary of the Einstein-Maxwell-Vlasov system in any dimensions, as well as a brief introduction to the general relativistic Boltzmann equation for a simple gas.
View original: http://arxiv.org/abs/1303.2899

No comments:

Post a Comment