Gesualdo Delfino, Alessio Squarcini
We consider the scaling limit of a generic ferromagnetic system with a continuous phase transition, on the half plane with boundary conditions leading to the equilibrium of two different phases below criticality. We use general properties of low energy two-dimensional field theory to determine exact asymptotics of the magnetization profile perperdicularly to the boundary, to show the presence of an interface with endpoints pinned to the boundary, and to determine its passage probability. The midpoint average distance of the interface from the boundary grows as the square root of the distance between the endpoints, unless the reflection amplitude of the bulk excitations on the boundary possesses a stable bound state pole. The contact angle of the phenomenological wetting theory is exactly related to the location of this pole. Results available from the lattice solution of the Ising model are recovered as a particular case.
View original:
http://arxiv.org/abs/1303.1938
No comments:
Post a Comment