Tuesday, March 5, 2013

1303.0335 (Adam B. Clark)

Energy Positivity, Non-Renormalization, and Holomorphy in
Lorentz-Violating Supersymmetric Theories
   [PDF]

Adam B. Clark
This paper shows that the positive-energy and non-renormalization theorems of traditional supersymmetry survive the addition of Lorentz violating interactions. The Lorentz-violating coupling constants in theories using the construction of Berger and Kostelecky must obey certain constraints in order for the positive energy theorem to remain intact. Seiberg's holomorphic arguments are used to prove that the superpotential remains non-renormalized (perturbatively) in the presence of Lorentz-violating interactions of either the Berger-Kostelecky type or the Nibbelink-Pospelov type. Holomorphic techniques also provide a simple new proof that Nibbelink-Pospelov type theories do not develop quadratic divergences. Seiberg's techniques for obtaining exact superpotentials in SQCD are completely unchanged in the presence of Nibbelink-Pospelov type Lorentz violation, yielding superpotentials that differ from Seiberg's own results by, at most, a minor change in constants that come from the gauge coupling beta function.
View original: http://arxiv.org/abs/1303.0335

No comments:

Post a Comment