Oscar J. C. Dias, Jorge E. Santos
The Teukolsky master equation and its associated spin-weighted spheroidal harmonic decomposition simplify considerably the study of linear gravitational perturbations of the Kerr(-AdS) black hole. However, the formulation of the problem is not complete before we assign the physically relevant boundary conditions. We find a set of two Robin boundary conditions (BCs) that must be imposed on the Teukolsky master variables to get perturbations that are asymptotically global AdS, i.e. that asymptotes to the Einstein Static Universe. In the context of the AdS/CFT correspondence, these BCs allow a non-zero expectation value for the CFT stress-energy tensor while keeping fixed the boundary metric. When the rotation vanishes, we also find the gauge invariant differential map between the Teukolsky and the Kodama-Ishisbashi (Regge-Wheeler-Zerilli) formalisms. One of our Robin BCs maps to the scalar sector and the other to the vector sector of the Kodama-Ishisbashi decomposition. The Robin BCs on the Teukolsky variables will allow for a quantitative study of instability timescales and quasinormal mode spectrum of the Kerr-AdS black hole. As a warm-up for this programme, we use the Teukolsky formalism to recover the quasinormal mode spectrum of global AdS-Schwarzschild, complementing previous analysis in the literature.
View original:
http://arxiv.org/abs/1302.1580
No comments:
Post a Comment