Friday, January 4, 2013

1006.0047 (Matthew Headrick)

Entanglement Renyi entropies in holographic theories    [PDF]

Matthew Headrick
Ryu and Takayanagi conjectured a formula for the entanglement (von Neumann) entropy of an arbitrary spatial region in an arbitrary holographic field theory. The von Neumann entropy is a special case of a more general class of entropies called Renyi entropies. Using Euclidean gravity, Fursaev computed the entanglement Renyi entropies (EREs) of an arbitrary spatial region in an arbitrary holographic field theory, and thereby derived the RT formula. We point out, however, that his EREs are incorrect, since his putative saddle points do not in fact solve the Einstein equation. We remedy this situation in the case of two-dimensional CFTs, considering regions consisting of one or two intervals. For a single interval, the EREs are known for a general CFT; we reproduce them using gravity. For two intervals, the RT formula predicts a phase transition in the entanglement entropy as a function of their separation, and that the mutual information between the intervals vanishes for separations larger than the phase transition point. By computing EREs using gravity and CFT techniques, we find evidence supporting both predictions. We also find evidence that large-$N$ symmetric-product theories have the same EREs as holographic ones.
View original: http://arxiv.org/abs/1006.0047

No comments:

Post a Comment