Riccardo Borsato, Olof Ohlsson Sax, Alessandro Sfondrini
Using the S-matrix for the d(2,1;alpha)^2 symmetric spin-chain of AdS3/CFT2, we propose a new set of all-loop Bethe equations for the system. These equations differ from the ones previously found in the literature by the choice of relative grading between the two copies of the d(2,1;alpha) superalgebra, and involve four undetermined scalar factors that play the role of dressing phases. Imposing crossing symmetry and comparing with the near-BMN form of the S-matrix found in the literature, we find several novel features. In particular, the scalar factors must differ from the Beisert-Eden-Staudacher phase, and should couple nodes of different masses to each other. In the semiclassical limit the phases are given by a suitable generalization of Arutyunov-Frolov-Staudacher phase.
View original:
http://arxiv.org/abs/1212.0505
No comments:
Post a Comment