1211.4151 (Sandor Nagy)
Sandor Nagy
A short introduction is given on the functional renormalization group method, putting emphasis on its nonperturbative aspects. The method enables to find nontrivial fixed points in quantum field theoretic models which make them free from divergences and leads to the concept of asymptotic safety. It can be considered as a generalization of the asymptotic freedom which plays a key role in the perturbative renormalization. We summarize and give a short discussion of some important models, which are asymptotically safe such as the Gross-Neveu model, the nonlinear $\sigma$ model, the sine-Gordon model, and the model of quantum Einstein gravity. We also give a detailed analysis of infrared behavior of the models where a spontaneous symmetry breaking takes place. The deep infrared behavior of the broken phase cannot be treated within the framework of perturbative calculations. We demonstrate that there exists an infrared fixed point in the broken phase which creates a new scaling regime there, however its structure is hidden by the singularity of the renormalization group equations. The phase spaces of these models show several similar properties, namely the models has the same phase and fixed point structure. These results can only be uncovered by the functional renormalization group method.
View original:
http://arxiv.org/abs/1211.4151
No comments:
Post a Comment