Dao-Jun Liu, Bin Yang, Yong-Jia Zhai, Xin-Zhou Li
Under the hypothesis of asymptotic safety of gravity, the static, spherically symmetric black hole solutions in the infrared limit are corrected by non-perturbative effects. Specifically, the metric is modified by the running of gravitational couplings. In this work, we investigate the effects of this correction to the quasinormal modes (QNMs) of a test scalar field propagating in this kind of black hole background analytically and numerically. It is found that although the quasi-period frequencies and the damping of oscillations are respectively enhanced and weakened by the quantum correction term, the stability of the black hole remains.
View original:
http://arxiv.org/abs/1205.4792
No comments:
Post a Comment