Valentin Bonzom, Razvan Gurau, Vincent Rivasseau
Tensor models generalize random matrix models in yielding a theory of
dynamical triangulations in arbitrary dimensions. Colored tensor models have
been shown to admit a 1/N expansion and a continuum limit accessible
analytically. In this paper we prove that these results extend to the most
general tensor model for a single generic, i.e. non-symmetric, complex tensor.
Colors appear in this setting as a canonical book-keeping device and not as a
fundamental feature. In the large N limit, we exhibit a set of Virasoro
constraints satisfied by the free energy and an infinite family of
multicritical behaviors with entropy exponents \gamma_m=1-1/m.
View original:
http://arxiv.org/abs/1202.3637
No comments:
Post a Comment